
  

 

Abstract—With the Robonaut-2 humanoid robot now 

permanently flying on the ISS, the potential role for robots 

participating in cooperative activity in space is becoming a 

reality.  Recent research has demonstrated that cooperation in 

the joint achievement of shared goals is a promising framework 

for human interaction with robots, with application in space.  

Perhaps more importantly, with the turn-over of crew 

members, robots could play an important role in maintaining 

and transferring expertise between outgoing and incoming 

crews.  In this context, the current research builds on our 

experience in systems for cooperative human-robot interaction, 

introducing novel interface and interaction modalities that 

exploit the long‐term experience of the robot.  We implement a 

system where the human agent can teach the Nao humanoid 

new actions by physical demonstration, visual imitation, and 

spoken command.  These actions can then be composed into 

joint action plans that coordinate the cooperation between agent 

and human.  We also implement algorithms for an 

Autobiographical Memory (ABM) that provides access to of all 

of the robots interaction experience.   These functions are 

assembled in a novel interaction paradigm for the capture, 

maintenance and transfer of knowledge in a five-tiered 

structure.  The five tiers allow the robot to 1) learn simple 

behaviors, 2) learn shared plans composed from the learned 

behaviors, 3) execute the learned shared plans efficiently, 4) 

teach shared plans to new humans, and 5) answer questions 

from the human to better understand the origin of the shared 

plan.  Our results demonstrate the feasibility of this system and 

indicate that such humanoid robot systems will provide a 

potential mechanism for the accumulation and transfer of 

knowledge, between humans who are not co-present.  

Applications to space flight operations as a target scenario are 

discussed. 

  

Index Terms—human-robot interaction, shared-plan, 

behavior learning, robotic teaching, space-flight operations. 
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I. INTRODUCTION 

Humanoid robots will play an increasingly important role 

in interaction with human crews in modern space-flight 

operations [1],  and thus a major goal is to render these 

robots as useful as possible.  Research in human social 

interaction has demonstrated that one of the unique abilities 

that provides the basis for human social interaction is 

cooperation [2].  Inspired by this, we have developed a 

methodology for cooperative human-robot interaction 

systems with language playing an important role [3-7].  We 

believe that if humanoid robots are to engage with humans in 

useful, timely and cooperative activities, they must be able to 

learn from their experience with humans, and importantly, to 

share their knowledge in a suitable way.   

 

 
Figure 1. Robot as Learner and Teacher.  Column A.  Agent 1 teaches the 

Nao composite actions “hold” and “release”, and then combines these in 

the shared plan “repair electronic card, which they perform together.  

Column B. Later, Nao teaches the shared plan to Agent 2, invites him to 

watch the training video, then they perform the shared plan together. 
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Learning by imitation or/and demonstration provide 
methods for humans to transmit desired behavior to robots 
[8, 9] and such learning can then provide the basis for 
building cooperative shared plans, in which the robot and 
human work together to achieve a shared goal.  In the current 
research, we implemented these modalities by allowing the 
robot to learn simple behaviors and then to compose more 
complex shared plans by integrating these named learned 
behaviors, illustrated in Figure 1. 

Using these behaviors as building blocks, the humans can 
teach the robot new shared plans - goal directed action plans 
achieved by two cooperating agents, in order to achieve a 
common goal that could otherwise not have been achieved 
individually [2].  Part of the uniquely human ability to 
cooperate is to change roles – to take the place of the other 
in the cooperative activity [9].  Thus, part of the novelty of 
the current research is to reverse the roles in teaching-
learning shared plans.  We implement this capacity in our 
cognitive system, such that the robot is no longer only 
learning from humans, but now takes on the role of teacher.  
Using the robot as a means for transmitting expert shared-
task knowledge can be of particular use in cases where 
human crews are replaced, and robots remain in place to 
potentially transmit acquired knowledge, such as in space-
flight operations [10].   

II. A SCENARIO FOR HUMAN-ROBOT COOPERATION 

Figure 1 illustrates the Human-Robot Interaction (HRI) 
scenario that we developed in this research which involves 
two humans (Agent1 and Agent2) and the robot Nao. In the 
first part of the scenario, Agent1 teaches Nao, whereas in the 
second part Nao becomes the teacher and Agent2 is the 
learner. The interest here is to demonstrate that the robot can 
thus serve as a platform for interactive sharing of 
accumulated knowledge between humans, though the 
humans do not directly interact.  During spaceflight 
operations on the International Space Station (ISS), crew 
renewal could require mechanisms for transmitting 
information between crew members who are not 
simultaneously present [10].  Astronauts in one crew would 
teach the robot new shared plan procedures.  The robot could 
then transmit this knowledge to new members of the next 
crew, thus providing continuity in the maintenance and 
transfer of knowledge.  The Robonaut 2 humanoid is 
currently flying on the ISS [1], so such situations have a 
realistic future possibility.   

 The shared goal in our example cooperation scenario is to 
repair a electronic board/card that has become broken. The 
card should be removed and then held, and a defective part 
replaced.  Thus, the card cannot be repaired by a single agent 
alone. Agent1 needs help from Nao to hold the card while it 
is being repaired. Agent1 starts by teaching Nao first how to 
hold and then to release the card, by physical demonstration, 
and then he teaches the shared plan by vocally describing the 
different steps. Finally, he executes the shared plan while 
Nao records with video what it is seeing. Later, Agent2 
arrives, and does not know how to repair the electronic card. 
Agent2 asks Nao how to do it, watches the video recorded in 
part one and then executes the shared plan with the robot. 

 

 
 

Figure 2.  Five tiers of Knowledge Transmission 

III. IMPLEMENTATION OF THE SYSTEM 

A. The Nao humanoid  

The current study is performed with the Nao humanoid 

robot which is a 25 degree of freedom humanoid robot 

(Aldebaran). Nao is a medium size (57 cm) entertainment 

robot that includes an on-board CPU x86 AMD Z530 

processor with 1.66 GHz and 2Gb Flash memory, WiFi 

(802.11g) and Ethernet, two 640x480 cameras with up to 30 

frames per second, inertial measurement unit (2 gyro meters 

and 3 accelerometers), 2 bumper sensors and 2 ultrasonic 

distance sensors. Its open, programmable and evolving 

platform can handle multiple applications. The on-board 

processor can run the YARP server (described below) and 

can be accessed over the internet via cable and WiFi. 

We extend the perceptual system of the Nao to include a 

3D motion capture capability implemented with the Kinect™ 

sensor. The OpenNI library using the color + depth data 

delivered by the Kinect sensor recognizes a human body 

image in a configuration posture, and then continuously 

tracks the human for the learning modality “Kinect”, 

described below. 

B. Inter-Process Communications via YARP 

Functional processes implemented in different software 
modules are interconnected using YARP, an open source 
middleware developed to support software development in 
robotics [11, 12]. YARP provides an intercommunication 
layer that allows processes running on different machines to 
exchange data. Data travels through named connection 
points called ports. Communication is platform and transport 
independent: processes are not aware of the details of the 
underlying operating system or protocol and can be relocated 
at will across the available machines on the network. 
Interface between modules is specified in terms of YARP 
ports (i.e., port names) and the type of data these ports 
receive or send (respectively for input or output ports) is 
specified in the “bottle”. This modular approach allows 
minimizing the dependency between algorithm and the 
underlying hardware/robot; different hardware devices 
become interchangeable as long as they export the same 
interface. 
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C. System architecture 

 

The system behavior is coordinated by the Supervisor, 

and spoken language interaction with the human is realized 

by the SpeechRecognizer, developed using the Microsoft 

speech recognizer SAPI5.1.  We use a simple, task-specific 

grammar and vocabulary that allows the recognizer to label 

each word or group of words according to its semantic role 

in the sentence. The structure of the interaction commands 

are specified in section IV. For example, in the commands 

“Learn stop” or “Replay start”, the first word will be 

labeled as the action and the second as the start/stop 

modality. Working with grammars and vocabularies has the 

advantages of binding the semantic role of each word 

directly, and generating less recognition errors due to the 

specific limited vocabulary specified for the task. 

 

 

 
 

Figure 2 – System architecture.  The architecture is organized in 

functional modules that provide sensory-motor input and output to 

the robot, storage and recall of learned behavior, and coordination 

of the interactions via spoken language.  See text for details. 

 

  

The recognized sentences are sent to the Supervisor that 

packages the extracted meaning into commands for 

RobotInterface.  The RobotInterface interacts with the robot 

via TeleopNao, which manages the interface between the 

system level representation of action (in the Kinect human 

format) and the Nao.  The RobotInterface also manages 

storage of behaviors, and shared plans and their execution. 

This includes a function for learned behavioral trajectories 

based on shifted mean angle values and angle derivation that 

smooths the motion and removes beginning and end of the 

learning where robot is not moving. 

For learning by demonstration or imitation, the 

RobotInterface also controls the activation of dataDumper 

that stores, with a timestamp, Yarp bottles sent to teleopNao. 

These  contain human joints angles <roll, pitch, yaw> for the 

the following segments: head, torso, both arms: shoulder,  

elbow, and wrist and finally <left_hand,right_hand> for the 

hands (from 0, hand closed, to 1 hand opened).  For 

replaying learned actions,  RobotInterface uses 

DataSetPlayer (developed with YARP) to simulate the 

sending of stored bottles during a behavior replaying 

process. 

Learning a behavior can be made in two different 

modalities.  The first, called “Kinect,” is based on visual 

imitation of the user’s actions through Kinect (teleopKinect 

converts Kinect data to human joints, it is based on the 

SWOOZ platform [13] open source code: 

https://github.com/GuillaumeGibert/swooz), the second 

modality, called “Demo,” consists in manually moving the 

Nao’s joints (teleopNao converts Nao joints to human 

joints). 

The Objects Properties Collector (OPC) serves as a 

working memory, and represents the state of the world at a 

given time. The OPC encodes the contextual data from the 

different sensors which will be stored in the autobiographical 

memory (ABM) [14].  This memory provides a continuous 

log of all interactions which can later be interrogated, and 

also is used, to identify the user in order to allow the system 

to adapt to the user’s experience level.  The robot will 

provide more explicit instruction to beginners, and will avoid 

this with more experienced users. 

 

IV. INTERACTION  

The system should allow the user to manage behaviors, that 

is, to teach new behaviors in different modalities, and then to 

use these behaviors. We thus implemented a set of 

corresponding behavior management commands (listed in 

Table 1).  We also provide commands allowing the user to 

access some of the native functions of the Nao (Table 2).  

These are available for use with a set of commands for the 

creation and use of shared plans (Table 3). 
 

Vocal command Correspondence 

Learn demo  <behavior_name> 

Learn kinect <behavior_name> 

Launch learning process with the 

label <behavior_name> and the 

modality physical demonstration 

or Kinect demonstration 

Learn demo more (by erasing) Modify last loaded behavior by 

inserting or erasing movements 

(if “by erasing” pronounced) 

where behavior replaying was 

stopped. 

Learn stop Stop learning process and stored 

data 

Replay load  <behavior_name> Load the behavior 

Replay start Launch replaying process of the 

last behavior loaded 

Replay <behavior_name> Load the behavior, if existing 

launch the replaying process 

Replay stop Stop replaying process 

Video replay <behavior_name> Launch video with the label 

<behavior_name> on a screen 

Video record <behavior_name> 

 

Nao records what it is seeing in a 

video labeled with a behavior or 

shared plan name 

Delete <behavior_name> Delete the behavior 

List behavior Nao lists all the behaviors it knows 

Table 1 - Behavior management commands 
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A. General commands for behaviors 

The SpeechRecognizer uses a simple grammar to recognize 

speech commands in different interaction modes.  

Commands concerning behaviors and their consequences are 

presented in Table 1. 

These commands allow for a full set of behavior 

management functions including the learning of new simple 

behaviors such as grasping or releasing the electronic card;  

allowing the user to indicate whether learning will be by 

Kinect, or physical demonstration; to indicate that the robot 

should film what it is doing for future knowledge 

transmission; and to list the set of learned behaviors.  This 

corresponds to tier 1 of knowledge transmission. 

B. Specific commands 

In addition to the behavior commands, the user should also 

have access to native functions of the robot, including 

opening and closing the hands, and different modes of 

locomotion.  These are specified in Table 2.  
 

 

Vocal command Correspondence 

Open/close left/right/both hand(s) Apply the corresponding action to 

the hands 

Go to posture init Nao goes to initial posture 

Go to sleep Nao goes to a safety posture and 

the system shuts down 

Walk forward/backward Nao walks in the stipulated 

direction  

Turn left/right Nao pivots in the stipulated 

direction 

Walk stop Nao stops any walking/turning 

action 

Follow red <object> Nao tracks any visible red object 

by walking 

Table 2 - Specific commands 
 

C. General commands for shared plans 

Table 3 identifies commands that allow the user to 

compose shared plans from the component actions that have 

been learned, or that are native to the robot.   This 

corresponds to Tier 2 interaction – learning shared plans, 

where the user indicates who does what actions in the shared 

plan.  Tier 3 interactions – executing shared plans, allow the 

user to replay the shared plans, and to have the robot 

describe the shared plan verbally.  Finally, in tier 4 

interactions, a newly arrived user can access previously 

learned shared plans in order to him/herself learn those 

shared plans. 

D. Commands for accessing Autobiographical memory 

The Tier 5 interactions provide the user access to the 

accumulated knowledge and “experience” of the robot, 

encoded in the autobiographical memory.  Table 4 specifies 

commands that allow the user to pose questions to the robot, 

related to its accumulated experience as encoded in the 

ABM.  In actual operations, this can allow the new user of a 

shared plan to better understand the needs for, and origin of 

the shared plan. 

 

 

 

Vocal command Correspondence 

Learn shared plan <plan_name> Launch shared plan learning 

process with the label 

<plan_name> 

I/You do <behavior_name> Describe a shared plan step 

Learn stop Stop learning process and stored 

shared plan 

Replay  <plan_name> (but we 

change role) 

Launch shared plan replaying 

process (role inversion if “but 

we change role pronounced) 

Replay next Pass the shared plan to next step 

Replay stop Stop replaying process 

Explain me how to <plan_name> Nao describes the shared plan 

steps 

Video replay <plan_name> Launch video with the label 

<plan_name> on a screen 

Video record <plan_name>  Nao records what it is seeing in 

a video labeled with a behavior 

or shared plan name 

Table 3 - Shared plan management commands 

 

Vocal command Correspondence 

When was  the <first, last> time you 

<learned, did> <plan_name, 

behavior_name>? 

Return information about when 

this event occurred 

How many times did this happen? For the current action, reply with 

how many times 

Who was present? Say who was there 

What did you do? Report on all actions performed 

with the person at that meeting 

Do you want to talk more about it? Continue or not on the same 

person or event 

Table 4 – Autobiographical memory management commands 

V. PROOF OF CONCEPT 

A. Interaction enhancements 

We used a standard set of interaction enhancements 

including (1) Speech verification (e.g. “Did you say learn 

demo hold?”) so speech recognition errors were reduced. 

(2) To avoid subjects having difficulty knowing what they 

could say to the robot at different periods in the interaction, 

we defined a beginner/expert mode distinction (>10 

interactions for a beginner).  In beginner mode, the system 

explains the current possibilities to the user. (3)  We used 

the colors of the LEDs in the eyes to communicate which of 

the three states (waiting for instructions, learning, or 

executing a learned behavior) the robot was in at all times, 

which aided subjects in keeping track of the stages of the 

interaction. 

 

  
Figure 3 – Naïve subject teaching robot to hold. A. Nao in initial 

posture. B. User teaching hold to Nao 
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B. Five-Level System Validation 

In order to evaluate the system, we tested naive subjects 

(who had never used the system before) in the Figure 1A 

scenario. Subjects have to teach “hold card” and “release 

card” behaviors, and then combine these two new behaviors 

to teach the shared plan “repair electronic card,” and finally 

execute the shared plan with the robot. Prior to the 

experiment, subjects were given a scenario description as 

illustrated in Figure 1A, and a printed page that summarized 

the possible types of vocal commands as identified in Tables 

1-3. 

Five users, who had never interacted with the system, 

participated in the experiment.  They enacted this scenario 

twice, to allow us to measure how they adapted to the 

system.   In the following dialog excerpt we provide the 

literal transcription of the human-robot dialog during the 

interaction (illustrated in Figures 3 and 4), annotated with 

explanation about the corresponding human and robot 

behavior and key system functions in < > brackets. Robot 

language will be indicated in italics, and human language in 

bold text. This was the second use of the system by a 

subject, whom the robot still considered a beginner (based 

on the number of recorded interactions), and thus the system 

provided more instructions of what user can do. 

 

1) Phase 1. Learning “hold card” and “release card” 

behaviors 

Dialog: Who am I working with? Maxime. Did you say 

Maxime? < Asking confirmation >  Yes. Okay, what can I 

do for you? Learn demo hold . Did you say learn demo 

hold? Yes. Okay, I am ready to learn hold. Move my joints 

to show me. You can use special move like open both hands 

while teaching. Say learn stop when you have finished. < 

Human moving Nao’s arms > Open both hands. < Inserting 

the electronic cards between Nao’s hands > Close both 

hands. < Nao closes its hands > Learn stop. Did you say 

learn stop? Yes. Okay. I have successfully stored hold. Was 

it successful according to you? Yes. < Nao stays in the final 

position of hold > Learn demo release . Did you say learn 

demo release? Yes. Okay, I am ready to learn release. Move 

my joints to show me. You can use special move like open 

both hands while teaching. Say learn stop when you have 

finished. Open both hands < Taking the electronic card and 

moving Nao’s arms > Learn stop. Did you say learn stop? 

Yes. Okay. I have successfully stored hold. Was it successful 

according to you? Yes. Okay. 

 

2) Phase 2. Learning the shared plan “repair electronic 

card” 

Dialog: Learn shared plan repair electronic card. Did 
you say learn shared plan repair electronic card? Yes. 
Okay, I am ready to learn the shared plan repair electronic 
card. Tell me step by step what we have to do and say learn 
stop when you have finished. You do hold. Did you say you 
do hold? Yes. Okay, then? I do connect. Did you say I do 
connect? Yes. Okay, then? You do release. Did you say you 
do release? Yes. Okay, then? Learn stop. Did you say learn 
stop? Yes. Okay, I have to hold, then you have to connect, 

then I have to do release. Okay, I got it. I have successfully 
stored repair electronic card, was it successful according to 
you? Yes. Okay. 

 
Figure 4 – Naïve subject executing shared plan. A. Nao in initial 

posture. B. Nao holding electronic card. C. User connecting wires. 

D. Nao releasing electronic card 

 

 

3) Phase 3. Executing the shared plan with the robot 

Dialog: Replay repair electronic card. Did you say replay 

repair electronic card? Yes. I have to do hold, tell me when 

I have finished by saying replay next. < Nao holds electronic 

card > Replay next. You have to do connect, tell me when 

you have finished. < User connects wires > Replay next. I 

have to do release, tell me when I have finished. < Nao 

releases electronic card > Replay next. Shared plan is 

finished. Replay stop. Did you say replay stop? Yes. Okay, 

was it successful according to you? Yes. Okay. Go to sleep. 

Did you say go to sleep? Yes. Okay, bye bye, see you soon. 

<System shuts down> 

 

 
Figure 5 - Average time spent on learning individual behaviors, 

learning shared plan, and execution of shared plan, for 5 naïve 

users.     
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Figure 5 illustrates the action performance times for the 

different sub-tasks in the shared plan - repair electronic card.  

The considerable time difference to accomplish the scenario 

in the first vs.  second repetition indicates the user’s 

relatively rapid adaptation to the system. The first time, users 

accomplish the complete interaction scenario in about 9 

minutes 36 seconds and the second time, they realize the 

scenario on average in 5 minutes 27 seconds.  We compared 

times for the first vs. second repetitions using a Wilcoxon 

signed-rank test for the global scenario, and on each sub-

task.  The repetition effect was significant for overall 

scenario realization and “hold” learning (p= 0.029, p= 0.014 

respectively).  The significant repetition effect for “hold” is 

likely due to the fact that this corresponds to the user’s first 

contact with the robot and the system.  We do not consider 

this as a statistically significant result, but simply a 

description of the performance of 5 subjects in a proof of 

concept demonstration. 

These results demonstrate that naïve subjects can use the 

system to teach the robot new simple behaviors, and build 

these into a cooperative shared plan, and that they adapt 

readily to the system. 

 

 
Figure 6 – Demonstration of the system in tier 4 mode.  A. Nao 

explains shared plan to user. B. Video of shared plan shown on a 

screen. C. and D. User executes shared plan with Nao. 

 

4) Phase 4. Robot Transmission to New User  

 

Until this point we remain in the standard situation of 

shared plan learning.  Now we go beyond this so that the 

robot can be used to teach the shared plan to a new user.  

Figure 1B illustrates the scenario for this reversed situation, 

where the robot becomes the teacher and the human learns 

from the robot, who shares what it experienced. After 

learning from Agent1, the robot then teaches the learned plan 

to a new user, Agent2.  The robot explains the learned shared 

plan, and physically shows a video of what it perceived 

during the shared plan execution (illustrated in Figure 7). 

Execution of this scenario with a naïve subject is illustrated 

in Figure 6, and the corresponding dialog excerpt provided 

here:  

 

Dialog: Explain me how to repair electronic card. Did 

you say explain me how to repair electronic card? Yes. 

Okay. I have to do hold, then you have to connect, then I 

have to release. Video replay repair electronic card. Did 

you say video replay repair electronic card? Yes. Okay. 

Look at the screen, I show you. < Video of what was seen by 

the robot while executing the shared plan repair electronic 

card is displayed on a computer screen – see Figure 7 >.   

 

At this point the subject in Figure 6 has seen the video 

illustrating the unfolding of the shared plan.  Based on this 

knowledge, he can then proceed with execution of the shared 

plan.  The subject illustrated in Figure 6 successfully used 

the system functionalities and repaired the electronic card, 

thus demonstrating proof of concept that the system can be 

used in this tier 5 mode.  

 

 
 
Figure 7. Excerpts from the video recorded by Nao during teaching 

by Agent1, visualized by Agent2 in the Tier 4 – Knowledge 

transmission  Context.  A.  Agent1 inserting card in Nao’s grasp 

during teaching of “hold”.  B.  Just prior to insertion. C.  Card 

being held by Nao.  D. Agent1 performing “connect cable” on card 

while Nao holds the card.  E.  Agent1 taking card as Nao performs 

“release”. F.  Agent1 inspecting his work after the shared plan has 

been executed. 

 

5) Phase 5. Explaining Origin of Shared Plan Using 

Autobiographical memory 

 

All of the events experienced by the Nao have are stored in 

its Autobiographical memory.  This memory provides an 

important source for the accumulation of knowledge that can 

be used by future agents.  Here we provide a dialog excerpt 

that illustrates how an agent can interrogate the ABM in 
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order better understand how certain behaviors have been 

taught to the robot. 

 

Dialog: When was the first time you learned repair 

electronic card?  It was the 13 of March of 2014. You want 

to know more about it?  No. When was the last time you 

learned repair electronic card?  It was the 14 of June of 

2014.  Who was there? Marwin was there. You want to 

know more about it? No. When was the first time you did 

hold? It was the 13 of March of 2014. You want to know 

more about it ? No.  When was the last time you did hold? 

It was the 29, of April, of 2014. You want to know more 

about it ? How many times did this happen?  It happened 

282 times You want to know more about it ?Who was 

present ? Colas was present. You want to know more about 

it ?What have you done? He taught me hold, and it 

worked.  He taught me release, and it worked.  He  taught 

me Repair electronic card, and it worked.  We did release, 

and it worked. 

 

 This ability to interrogate the autobiographical memory in 

the tier 5 interaction represents and  

C. Real-time control 

While we concentrate on the scenarios in Figure 1, the 

system allows open ended construction of actions that can 

contribute to shared plans.  In this context, the advantage of 

the modular software architecture is that we can duplicate the 

interaction-related modules (SpeechRecognizer and 

Supervisor) so that the robot can interact with two different 

people at the same time.  This allows two agents to interact 

together, via the robot, in real time. 

Let us again imagine the robot aboard the ISS, with two 

astronauts separated by several meters and performing tasks 

that prevent them from changing location.  One agent needs 

a tool that the second agent is using. Agent1 will send the 

robot to get the tool but he has no time to teach anything, he 

will use direct commands in collaboration with the other 

human. Here is a dialog segment from a demonstration of 

this interaction. 

Dialog: < First agent > Turn left. Did you say turn left? 

Yes. Okay. < Nao turns left > Turn Stop. < Repetition not 

needed, because it’s a real-time command > Follow red t-

shirt on. Did you say follow red t-shirt on? Yes. Okay.< 

Nao walks to the red t-shirt it sees > < Second agent > 

Follow red t-shirt off. Did you say follow red t-shirt off? 

Yes. Okay. < Nao stops tracking the red t-shirt > Replay left 

arm up. Did you say replay left arm up? Yes. Okay < Nao 

raises it left arm, this behavior was previously learned in 

kinect mode> Open left hand. Did you say open left hand? 

Yes. Okay. < Nao opens left hand and second agent puts the 

tool in its hand > Close left hand. Did you say close left 

hand? Yes. Okay. < Nao closes left hand > Turn right.  Did 

you say turn right? Yes. Okay. < Nao turns right > Turn 

stop. Walk forward. Did you say walk forward? Yes. Okay. 

< Nao walks back to first agent > < First agent > Walk stop. 

Open left hand. Did you say open left hand? Yes. Okay. < 

First agent gets the tool> Go to sleep. Did you say go to 

sleep? Yes. Okay, bye bye, see you soon. <System shuts 

down> 

 

This scenario could then be saved as a shared plan, for 

example, called “Get it”.  Part of the objective of this final 

experiment is to demonstrate that the system allows the 

open-ended execution of the robot’s capabilities, as suited 

for a novel given task, rather than being hard wired just for 

the task.  That is, while we concentrated on the repair 

electronic card task, the system is open ended and can learn 

arbitrary shared plans within the 5 tier framework. 

 

VI. DISCUSSION AND FUTURE WORK  

A. Novelty 

We demonstrated a 5-tiered learning system that allows 

users (1) to teach low level behaviors, then (2) to teach 

composite shared plans that employ these learned primitives.  

(3)  At the third level, once this learning has occurred, the 

shared plan can then be used in an efficient manner, allowing 

for reduced execution time. Then, inspired by the notion of 

“role reversal” [15] we introduced a novel extension of the 

human-robot cooperation paradigm in the fourth level of 

interaction: (4) The notion is to use the robot as a vector for 

transmission of knowledge between humans.  We thus 

demonstrated that the robot could explain the shared plan, 

step by step to a new user, showing the user a video recorded 

from its on-board camera.  This allows the robot to become 

an effective vector of knowledge transfer between two 

humans who are not physically present together.  (5) The 

fifth level of interaction allows the new user to question the 

robot, in order to better understand the origin of the shared 

plan, who created it, when it was used etc.  The proof of 

concept of this 5 level interaction provides a stepping stone 

for the development and deployment of such interaction 

algorithms to allow the accumulation and transmission of 

knowledge in the space flight operations environment. 

    

B. Related Work and Limitations 

This research is situated in the developing context of 

cooperative human-robot interaction [16], language based 

interaction [17-19], imitation and demonstration based 

learning [20-25].  While Crangle and Suppes [26] state that 

“the user should not have to learn specialized technical 

vocabularies to request action from a robot”, this is not the 

case for our system. That is, users must learn to use 

unconventional utterances such as “learn stop”, to end the 

learning.   Rather than directly accessing internal commands, 

an intermediate layer for communication can make the link 

between human language (and the variety of sentences 

possible referring to the same thing) and understandable 

action for robot.  We have begun to address how such 

mappings can be learned [27], and future research will 

address such mapping in the current context.   
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C. Applications 

Because the system is quite modular, and all internal 

kinematic configurations are in a platform independent 

representation (the human kinematic model native to Kinect) 

we can replace Nao by another robot, only by replacing the 

module teleopNao (which contains the algorithm that 

converts Nao joints to Kinect human joints and all low level 

functions: motion controller, LED controller, etc.). 

A potential application for such a system will be in space 

flight operations aboard the ISS.  The robot assistant will be 

able to allow astronauts to accomplish cooperative tasks 

(such as repair electronic card) by learning these tasks 

directly from the astronaut.  The resulting stored knowledge 

can then be of particular value in the context of crew 

renewal, where new crew members will replace the old crew, 

and the question of transfer of acquired experience will arise.  

The robot autobiographical memory provides a useful store 

of this knowledge.  The learned shared plans can be reused, 

and the robot can teach these new plans to new crew 

members.  By interrogating the ABM, the crew members can 

better understand the origin of these shared plans.  This 

proof of concept of a 5 tiered knowledge accumulation and 

transfer system should have useful application in human 

robot cooperative interaction. 
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