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agent into an efficient talking head: from
keyframe-based animation to multimodal
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Abstract

Background: Virtual humans have become part of our everyday life (movies, internet, and computer games). Even
though they are becoming more and more realistic, their speech capabilities are, most of the time, limited and not
coherent and/or not synchronous with the corresponding acoustic signal.

Methods: We describe a method to convert a virtual human avatar (animated through key frames and interpolation)
into a more naturalistic talking head. In fact, speech articulation cannot be accurately replicated using interpolation
between key frames and talking heads with good speech capabilities are derived from real speech production data.
Motion capture data are commonly used to provide accurate facial motion for visible speech articulators (jaw and lips)
synchronous with acoustics. To access tongue trajectories (partially occluded speech articulator), electromagnetic
articulography (EMA) is often used. We recorded a large database of phonetically-balanced English sentences with
synchronous EMA, motion capture data, and acoustics. An articulatory model was computed on this database to
recover missing data and to provide ‘normalized’ animation (i.e., articulatory) parameters. In addition, semi-automatic
segmentation was performed on the acoustic stream. A dictionary of multimodal Australian English diphones was
created. It is composed of the variation of the articulatory parameters between all the successive stable allophones.

Results: The avatar’s facial key frames were converted into articulatory parameters steering its speech articulators (jaw,
lips and tongue). The speech production database was used to drive the Embodied Conversational Agent (ECA) and to
enhance its speech capabilities. A Text-To-Auditory Visual Speech synthesizer was created based on the MaryTTS
software and on the diphone dictionary derived from the speech production database.

Conclusions: We describe a method to transform an ECA with generic tongue model and animation by key frames
into a talking head that displays naturalistic tongue, jaw and lip motions. Thanks to a multimodal speech production
database, a Text-To-Auditory Visual Speech synthesizer drives the ECA’s facial movements enhancing its speech
capabilities.

Keywords: Embodied conversational agent; Facial animation; Talking head; Motion capture; Multimodal speech
synthesis
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Background
Embodied Conversational Agents (ECAs) can use verbal
and nonverbal channels of communication to interact
with human partners. On the one hand and in the ECA
research community, a large amount of work has been
devoted to improve ECAs’ capabilities to communicate
by implementing human-like facial expressions, body
gesture, and body posture (Pelachaud 2009), but relatively
little research has focused on speech capacities in ECAs.
Therefore, ECAs have strong dialog capabilities but weak
speech production capabilities (Gris et al. 2014). In gen-
eral, ECA animation is driven using MPEG-4 Facial Ani-
mation Parameters (FAPs). Unfortunately, most FAPs are
low-level parameters that do not take into account speech
specific gestures (Bailly et al. 2003). On the other hand,
the speech research community has focused on visual
speech capacities by developing dedicated virtual agents
called talking heads. Early talking heads were based on
simple animation techniques using a set of key frames
(most of the time, visemes (Fisher 1968); i.e., a visually
distinguishable face/mouth shape unit) coupled with a
set of rules to create the correct transitions between
those key frames (Cohen and Massaro 1993). However,
this approach is not sufficient to create high quality
auditory-visual (AV) speech synthesis. Research has
now progressed with new animation techniques using
corpora of multimodal speech uttered by humans. The
corpora may be based on videos, such as those used in
(Ezzat and Poggio 2000; Cosatto and Graf 2000). These
approaches have created high quality transitions be-
tween visemes that have resulted in impressive synthetic
AV speech. In fact, naive subjects are not able to distin-
guish real from synthetic stimuli (Turing test) (Ezzat et
al. 2002). Nevertheless, these systems fail to increase in-
telligibility when compared to audio-only stimuli (Geiger
et al. 2003). Furthermore, some synthesizers need 3D data
in order to capture speech articulation. Photogrammetric
recordings with beans glued to a speaker’s face can provide
high resolution facial movement data (Bailly et al. 2002).
This passive sensor approach necessitates a tedious pre-
processing phase to construct a model that is able to fit
unseen data. Other recording techniques have used active
sensors to retrieve the positions of sensors over time with-
out necessitating preprocessing. Kuratate (Kuratate 2008)
used an Optotrak device to record a speaker’s facial move-
ment while uttering speech and created a high quality sys-
tem able to synthesize AV speech from any text input.
Other active sensor equipment has been used such as
Electro-Magnetic Articulograph (EMA) to record three
dimensional speech articulation database to drive data-
driven talking heads (Sheng et al. 2011) for computer
assisted pronunciation training.
Humans commonly employ speech reading in adverse

listening conditions to facilitate speech perception (Sumby

and Pollack 1954). The ability to visually obtain phonetic
information depends on watching facial movements that
are produced by the speech articulators: mainly by the lips
and jaw, and to some extent the larynx and tongue. These
movements have been shown to be highly correlated with
speech acoustics (Yehia et al. 2002). Although the tongue
is a partly occluded speech articulator, its movements pro-
vide useful information for visual speech perception. Per-
ceivers perform better with point-light displays including
additional dots on the tongue and the teeth than with dis-
plays with ‘lips only’ dots during speech perception experi-
ments (Rosenblum et al. 1996). Accurate 3D tongue
models have been included in talking heads. These models
are usually obtained by Magnetic Resonance Imaging
(Badin et al. 2002; Engwall 2000; Badin et al. 2008) and
animated by electromagnetic articulography data (Engwall
2003; Gibert et al. 2012; Steiner et al. 2013) or ultra-
sound images (Fabre et al. 2014). Computational ap-
proaches such as convolutive Nonnegative Matrix
Factorization could be used to derive interpretable
movement primitives from speech production data
(Ramanarayanan et al. 2013). These speech movement
primitives can be used to animate virtual agents’
speech articulators for a given set of activation data.
EMA may be also used to synthesize acoustic speech
from the variation of articulatory parameters (Toutios
et al. 2013). A promising next step is to use synchronous
recordings from EMA and motion capture data systems
(Jiang et al. 2002; Engwall 2005). With such a setup, a
large number of sensors can be placed on the speaker’s
face and tongue.
In the present paper, we propose an innovative method

to transform an existing ECA animated by interpolation
between key frames (i.e., with poor speech capabilities)
into a talking head. First, we describe the recording and
processing of a multimodal synchronous speech data-
base. An Optotrak Certus (Northern Digital Inc.) motion
capture system and a Wave (Northern Digital Inc.) elec-
tromagnetic articulography system were used to record an
Australian speaker uttering a large set of phonetically-
balanced sentences. This unique setup enabled lip, jaw,
and tongue trajectories to be recorded synchronously. We
built an articulatory model by decomposing each speech
articulator movements separately using guided Principal
Component Analysis (gPCA). Sensor positions were con-
verted into values of articulatory parameters in order to be
used to control most ECAs. Second, the ECA’s original
animation was modified: face and tongue key frames were
transformed into articulatory parameters. Finally, we used
the multimodal database to animate the ECA and used
the MaryTTS software (Schröder et al. 2011) to create a
multimodal text-to-speech synthesizer. This innovative
approach can be applied to most ECAs (whose animation
module is open) to improve their speech capabilities.
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Multimodal database
Method
Setup
An EMA system (Wave, Northern Digital Inc.) and an
active motion capture (mocap) system (Optotrak Certus,
Northern Digital Inc.) were used to record the position
of sensors attached to the face and the tongue during a
speech production session. These two systems were
manufactured to record synchronously the position of
their respective sensors together with the acoustic signal.
There were 30 mocap active sensors attached to the
speaker’s face: 3 for jaw motion, 8 for lip motion, 6 for
eyebrow motion and 4 for rigid head motion mounted
on a headset. Four additional sensors were attached to
the Wave transmitter to align the Optotrak and the
Wave referential systems. There were also 6 EMA sen-
sors: 3 glued (using dental glue) on the tongue (tongue
tip – TT, tongue body – TB, and tongue dorsum TD)
and 1 attached to the nasion and 2 to the tragus. The
positions of the sensors on the speaker’s face are dis-
played in Fig. 1.
The EMA field transmitter emits an electromagnetic

field and signals transduced in small sensors within the
field are resolved into spatial positions. The optimal
measurements were within a 30 cm virtual cube oriented
to the transmitter unit. The system delivered three
spatial (x,y,z) measurements per sample and per sensor
at 100 Hz. The accuracy of the tracking system has been
previously assessed and validated for speech research
(Berry 2011).
In the study, the positions of 34 Optotrak sensors were

recorded at 60 Hz. The positions of the 6 Wave sensors
were recorded at 100 Hz. The frames were time-
stamped with respect to the beginning of the Optotrak
recordings. The audio signal (mono, 22.05 kHz, 16 bits)
was recorded synchronously by the EMA system.

Participant
A 30-year old male native speaker of Australian English
participated in this recording.

Design and procedure
The speaker was seated close to the Wave transmitter and
facing the Optotrak device. The phonetically-balanced
sentences of the Lips challenge (Theobald et al. 2008;
Theobald 2003) were pronounced by an experimenter and
displayed on a screen facing the speaker. The speaker was
instructed to repeat each sentence in a neutral tone after
the experimenter. A set of 278 phonetically-balanced sen-
tences was recorded. For each sentence a recording ses-
sion of 10 s was set. Therefore, the total number of frames
(at 60 Hz) was 166800.

Data modeling
The recorded data are multimodal in essence: face,
tongue trajectories and acoustic signal. Several process-
ing steps were necessary before using the database to
animate the ECA. In fact, sensor trajectories cannot be
used directly to animate the ECA because of affordance
issues. The shape model of an ECA may significantly dif-
fer from human morphology. The articulatory modelling
provided ‘normalized’ animation parameters that can be
used to control the ECA even if the shape model is dif-
ferent from the speaker’s morphology. These processes
will be explained in the following subsections.

Acoustic segmentation
The audio files were automatically segmented using the
method exposed in the MaryTTS (http://mary.dfki.de/)
import voice procedure (Pammi et al. 2010). EHMM
acoustic labeler from festvox (Black and Lenzo 2007) was
used to generate label files from the audio files and corre-
sponding transcriptions. The label files created by this

Fig. 1 Sensor positions on the speaker’s face and tongue. A headset with 4 sensors was used to estimate the rigid head motion. The Wave
sensors (in red) were glued to the tongue tip, tongue body and tongue dorsum and attached to the nasion and tragus. The Optotrak sensors
(in blue) were attached to the face and the headset
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procedure used the SAMPA phonetic alphabet and were
stored as lab files. These files were then converted into
Textgrid files by a custom-made Matlab (MathWorks,
Inc., Natick, Massachusetts, United States) program. The
software Praat (Boersma and Weenink 2010) was used to
manually check and correct the segmentation. Therefore,
for each audio file, a corresponding text file listed the
series of phonemes and their timing information. From
these text files, other segmentation files were created con-
taining the series of diphones (i.e., the part of speech com-
prised between successive stable allophones) and their
timing information. These files were used to build the
multimodal dictionary that was then used to generate syn-
thetic multimodal speech.

Articulatory model
The Optotrak and Wave devices recorded at different
sampling rates. The Wave data were time-stamped by
the Optotrak device with respect to the beginning of the
Optotrak recording. The Wave data were downsampled
(low-pass filtered at 20 Hz) to 60 Hz and, if acquisition
timing differed between the Wave and the Optotrak
devices, interpolated between two consecutive frames.
After this step, the Wave and Optotrak data were sam-
pled at 60 Hz and synchronized.
Head movement (translations and rotations) was esti-

mated and corrected using the Optotrak sensors posi-
tioned on the headset and the Wave sensors placed on
the nasion and the tragus. Speech articulator movements

did not affect these sensors. A modeling procedure was
applied to the data with two specific aims: first, to ex-
tract meaningful parameters controlling an elementary
articulator, and second, to remove artifacts and measure
noise. PCA was applied to rigid motion. The first two
components explained more than 90 % of the total vari-
ance. An articulatory model was built using the method
proposed by (Gibert et al. 2005; Revéret et al. 2000;
Badin et al. 2002). A pruning step (simple vector
quantization) was applied to remove the frames in which
sensor positions were too similar (Euclidian distance <
1.0 mm). This step conditioned the data before building
the statistical models. Then, the contribution of the dif-
ferent speech articulators (jaw, tongue and lips) and the
eyebrows was iteratively subtracted. This subtraction
consisted of an iterative application of PCA on subsets
of landmarks.
The procedure extracted 10 articulatory parameters;

extreme variations of jaw1 and tongue1 are shown in
Figs. 2 and 3 respectively:

� Jaw opening (jaw1) using PCA on the jaw position
sensor values (13.40 % of the global variance);

� Tongue front-back movement (tongue1) using PCA
on the residual tongue (TB, TD) position values
(13.17 % of the global variance);

� Tongue flattening-bunching movement (tongue2)
using PCA on the residual tongue (TB, TD) position
values (4.83 % of the global variance);

Fig. 2 Maximum variations (solid and dashed lines) of the first articulatory parameter jaw1 driving the jaw. It displays the peaks of opening-closing
movement. The tongue follows the jaw opening movement and this movement is encompassed by this articulatory parameter
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� Tongue tip vertical movement (tongue3) using PCA
on the residual tongue (TT) position values (5.13 %
of the global variance);

� Tongue tip horizontal movement (tongue4) using
PCA on the residual tongue (TT) position values
(5.69 % of the global variance);

� Lip rounding (lips1) using PCA on the residual lip
position values (10.06 % of the global variance);

� Lip closing (lips2) using PCA on the residual lower
lip position values (0.93 % of the global variance);

� Lip raising (lips3) using PCA on the residual upper
lip position values (2.66 % of the global variance);

� Jaw rotation (jaw2) using PCA on the residual jaw
position sensor values (2.04 % of the global variance);

� Eyebrow movements (eyebrows1) using PCA on the
residual eyebrow position values (4.23 % of the
global variance).

The maximum variations of the first articulatory par-
ameter driving the jaw (jaw1) opening-closing move-
ment are shown in Fig. 2. The tongue is carried by the
jaw and this articulatory parameter also drives a tongue
rotation around a point at the back of the tongue (Badin
and Serrurier 2006). Four additional parameters driving
the tongue movements were derived from the data. Figure 3
represents the maximum variations of the first of them.
The parameters tongue1 and tongue2 were extracted
using the position of TB and TD sensors only. They con-
trolled the front-back and flattening-bunching movements.

The parameter tongue3 was extracted by guided PCA
using the position of TT sensor only.

Three articulatory parameters driving the lips were ex-
tracted. They corresponded to the lip protrusion (lips1),
lip closing (lip2) and lip raising (lip3) movements. Finally,
a parameter (eyebrows1) driving the eyebrow movements
was extracted as it may convey prosodic information
(Granstrom and House 2005).

Data reconstruction
The rigid head motion was estimated in terms of trans-
lations (Tx, Ty, Tz) and rotations (Rx, Ry, Rz) around
the neck (the center of rotation was estimated at the
same time). These movements were transformed into
articulatory parameters using the following equations:

αH
∧ ¼ argmin

αH∈½−3;3�N
∥P3D

∧

HEADSET−P3DHEADSET∥2

P3D
∧

HEADSET ¼ RigidMotion mHEADSET ; mHmvt þ αH eigvH
� �

where P3DHEADSET corresponded to the actual position of
Optotrak sensors placed on the headset, and P3D

∧

HEADSET
corresponded to the estimated ones, mHEADSET corre-
sponded to the average position of the sensors on the
headset, mHmvt corresponded to the mean rigid head mo-
tion of the model, αH corresponded to the rigid motion
parameter values to be estimated and eigvH corresponded
to the rigid motion model derived from PCA. The number

Fig. 3 Maximum variations (solid and dashed lines) of the first articulatory parameter driving the tongue. The parameter tongue1 corresponds to
the posterior and anterior extents of a tongue front-back movement
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N of rigid motion parameters driving the headset was 6.
The values of each parameter were limited to [−3; 3].
Each recording was then ‘inversed’, i.e., for each frame

of the recording, the values of the articulatory parame-
ters were estimated to minimize the Euclidian distance
between the original data and the reconstructed ones
using the following equation:

α
∧ ¼ argmin

α∈½−3;3�M
∥mFace þ α eigvFace−P3DWAVEOPTO∥2

where P3DWAVEOPTO corresponded to the position of
the Wave and Optotrak sensors after subtraction of the
rigid head motion, mFace corresponded to the mean face
configuration of the articulatory model, α corresponded
to the articulatory parameter values and eigvFace corre-
sponded to the articulatory model. The number M of ar-
ticulatory parameters driving the tongue was 10. The
values of each parameter were limited to [−3; 3]. This in-
version used the relation between the relative sensor posi-
tions to recover the position of missing data. Therefore,
the sensor trajectories were transformed into variations of
articulatory parameter values.
A low-pass Butterworth filter (6th order, 8Hz) was

applied to the articulatory parameters in order to re-
move noise due to recordings and missing data. An
example of variation of the articulatory parameter

values across time for a sentence of the corpus can
be seen in Fig. 4. The variation of these parameters is
clearly nonlinear. Animation approaches that use lin-
ear interpolation between key frames cannot replicate
such variations. After this filtering, the recordings
were reconstructed, i.e., missing data were estimated
using the articulatory model. The reconstruction error
computed as the Euclidian distance between the re-
corded position of the Optotrak/Wave sensors and
the reconstructed ones was M = 5.41 mm and SD =
3.15 mm. An example of data reconstruction can be found
in the Additional file 1: Video S1. This dataset comprised
a large amount of English phonemes in different con-
texts. A multimodal diphone dictionary was created. It
contained for each diphone, the variations of the articula-
tory parameters driving the visible and partly occluded
speech effectors.

Embodied Conversational Agent
Avatar
The avatar used in this study was a representation of an
Australian performance artist, Stelarc. This 3D model
was originally driven by a set of key frames controlling
the visible and partially occluded speech facial articula-
tors such as lips, jaw, and tongue. The full animation
was originally created by linear interpolations between

Fig. 4 Variation of the ten articulatory parameter values for the sentence: “Look at the windows and see if it’s raining”. The variations are
nonlinear and cannot be replicated with linear interpolation animation. The database is segmented into phonemes. A multimodal diphone
dictionary is created with this segmented database
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those key frames. Unfortunately, linear interpolations do
not accurately replicate speech articulator movements.
This is one of the reasons why we developed a new
animation method.

Face articulatory parameters
Selected key frames (from the original model) were used
to create articulatory parameters for driving the avatar.
The vertex coordinates of the neutral pose were subtracted
from the vertex coordinates of each key frame. The result-
ing variation between these positions was then variance-
normalized and set to vary between 0 and +3. Synthetic
articulatory parameters controlling the jaw (and the man-
dible) (jaw1) and the lips (lips1, lips2, and lips3) were
created. These parameters corresponded to the facial ar-
ticulatory parameters derived from EMA data. Note that
no parameter corresponding to jaw2 was found in
the available key frames. This parameter recovered
2 % of the global variance in the EMA data. It was
not included in the final set of synthetic articulatory
parameters for the animation.

Tongue articulatory parameters
Because tongue key frames were not related to any
speech articulation in the original animation, but only to
meaningless geometric variations, an alternative method
was designed. Each tongue sensor from EMA data was
associated with a specific vertex of the 3D tongue mesh
(which is composed of 50 vertices) of the original ECA
face model. For each sample of the quantized EMA data-
base, tongue postures were determined by estimating the
best linear mixture of weighted key frames that mini-
mized the distance between the EMA tongue sensor po-
sitions and the corresponding tongue mesh vertices. The
least square estimation of the vector of weights α was
simply performed by:

α
∧ ¼ argmin

α∈½−10;10�N ∥
XN

i

αiP3DKi−P3DEMA∥
2

where P3DKi corresponded to the position of the three
selected vertices of the 3D tongue mesh for the key
frame Ki, αi corresponded to the weights applied to the
key frame Ki, and P3DEMA corresponded to the position
of the three EMA sensors TD, TB and TT. The number
of key frames available in the original model was N = 9.
The values of each weight αi were limited to [−10; 10].
Examples of configurations found in the EMA database
and the corresponding constrained 3D tongue mesh are
visualized in Fig. 5.
After this step, a quantized database of 3D tongue

postures was created. For all the configurations of the
EMA database, corresponding constrained 3D tongue
mesh of 50 vertices was available. The reconstruction

error computed as the Euclidian distance between the
EMA sensor (TD, TB and TT) positions and the spe-
cific vertices of the 3D tongue mesh was M = 7.07 mm
and SD = 6.94 mm.
The same procedure as described in section 4.2.2 was

used to build a tongue articulatory model using the data-
base of 3D tongue postures in addition to the EMA
database. Finally, the articulatory tongue model was con-
trolled by 5 articulatory parameters (as described in
(Badin and Serrurier 2006)): jaw height/opening (jaw1),
tongue front-back (tongue1), tongue flattening-bunching
(tongue2), tongue tip vertical (tongue3) and tongue tip
horizontal (tongue4). Examples of the maximum variation
of key articulatory parameters are shown in Fig. 6. This
avatar was driven by similar articulatory parameters to the
ones derived in the modelling procedure described above
(Gibert et al. 2012).

Auditory-Visual Text-To-Speech system
Overview
The system proceeds in three steps. First, a module con-
nects to the MaryTTS server (http://mary.dfki.de/) and
asks for the list of phonemes and its duration for a given
text. Second, the same module requests an acoustic sig-
nal corresponding to the given text. Third, the list of
phonemes plus duration is sent to the Visual Text-To-
Speech (VTTS) module, which searches the best list of
diphone candidates and concatenates them to create ar-
ticulatory parameter trajectories. The acoustic signal and
the articulatory parameter trajectories are sent to the
animation module, which plays the data i.e., the ECA
speaks and moves his speech effectors (jaw, lips and
tongue) accordingly. The schematic representation of
the system is shown in Fig. 7.

Text-to-Speech
The first step of our system is to ask the MaryTTS
server (Schröder et al. 2011) to generate an acoustic
signal that corresponds to the new sentence. To this
end, the MaryTTS server performs natural language
processing to generate a list of phonemes and pros-
odic information (duration, pitch variation, intensity).
Finally, the synthesizer creates a sound signal from
this information using a cluster unit selection code
derived from FreeTTS. In fact, the recorded speech
signal was used to create a specific MaryTTS syn-
thetic voice for our speaker following the procedure
described in the voice creation module (Pammi et al.
2010). This procedure performs feature extraction
from acoustic and text data and then automatic seg-
mentation/labelling. The procedure was bypassed at
this stage to check manually the automatic segmen-
tation/labelling (see subsection 4.2.1). Then, the sys-
tem builds a unit selection voice from the manually
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checked segmentation files and the acoustic features.
Given the manual segmentation, the quality of the
voice is better than the fully automatic procedure
that can generate artifacts because of segmentation
errors.

The second step consists of asking the MaryTTS server
(Schröder et al. 2011) to provide the list of phonemes with
their duration. This information is sent to the visual syn-
thesis system. The generation of visual speech is explained
in the following section.

Fig. 5 Two tongue configurations (midsagittal view) from the quantized EMA database (TD, TB and TT sensor positions in blue) and the
corresponding constrained 3D tongue mesh (red mesh)
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Visual synthesis
Given the list of phonemes and their duration, the visual
synthesis system creates a list of diphones and their cor-
responding duration. For instance, if the word “Welcome”
is submitted to the MaryTTS server, it will return the fol-
lowing list of phones: _ w E l k @ m _ with their respective
timing (in seconds): 0.060, 0.125, 0.19, 0.29, 0.385, 0.51,
0.695. The corresponding list of diphones is then derived
as follows: _w, wE, El, lk, k@, @m, m_. The system
searches in the multimodal diphone dictionary containing
the trajectories of the articulatory parameters the various
candidates for each diphone. This step generates a trellis
of diphones (see Fig. 8). The best series of diphones is then
selected using a cost function based on a concatenation
weight. This step selects the best series of diphones that
minimize the Root Mean Square (RMS) distance between
values of the articulatory parameters of the previous
diphone and the current diphone.

Except in the case that a series of diphones corre-
sponds to a series contained in the dictionary (for in-
stance, the diphones El, lk and k@ comes from the same
sentence in the example of Fig. 8), there is always a gap
at each concatenation frontier (for example, between the
diphone @m and m_ in the example of Fig. 8). This gap
is reduced by applying a gapless processing step on the
articulatory parameters within the preceding diphone
gradually (Gibert et al. 2005). It consists of adding a
small value (equal to Δ* frame_index/frame_total_num-
ber, where Δ corresponds to the distance (i.e., gap) be-
tween the end of the current diphone and the beginning
of next one, frame_index corresponds to the time step
and frame_total_number corresponds to the total number
of time steps for the current diphone) to the variation of
the articulatory parameters at each time step. Even if there
is a concatenation gap between two consecutive diphones
as shown in Fig. 8, this procedure cancels it while keeping

Fig. 7 Schematic representation of the auditory-visual speech synthesis system. Given a new sentence to pronounce, the program acts as a MaryTTS
client and asks for an audio signal corresponding to this sentence and to the list of phonemes with their duration (provided by the prosodic
module embedded in the MaryTTS software). From the list of phonemes, a second program performs the visual synthesis. It searches the best
series of diphones given selection and concatenation costs in the multimodal dictionary. This series is processed to match the expected
duration and minimizes the gaps at each boundary. Finally, the acoustic signal and the variation of the articulatory parameters are passed to
the 3D Player which animates the ECA accordingly

Fig. 6 Examples of the maximum variation (one direction) of some articulatory parameters driving the avatar. a lips1 corresponds to lip
protrusion; b tongue2 corresponds to the flattening-bunching movement, c tongue1 corresponds to the posterior extent of a tongue front-back
movement, d tongue3 corresponds to the peak of a tongue tip vertical movement
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the nonlinear variations of the articulatory parameters.
This way, the final sample of the previous diphone coin-
cides with the first sample of the current one.

Animation
Acoustic and articulatory data are processed in parallel.
The system requests the audio file and the phone list to-
gether with timing to the MaryTTS server. The VTTS
module creates a file containing the variation of the ar-
ticulatory parameters with the same timing used by
MaryTTS to create the acoustic file (as described in the
previous subsection). Once the acoustic signal and the
matrix (articulatory parameter x time) of articulatory
parameter variations are available, two threads are
started: one playing the sound and another one playing
the face gestures. The animation module is a custom
written software developed using Java and Java3D/JoGL.
The animation module plays congruent and synchron-
ous articulatory and acoustic signals from the same
Australian speaker. In fact, any existing English
MaryTTS voices could be used together with the articu-
latory data we recorded. However, the visual signals may
become incoherent with American or British English
voices for instance. Moreover, synchronization may be
also different in this case. In our system, the same

segmentation files were used to create the acoustic and
articulatory sound units. Therefore, this module plays
the multimodal data synchronously. An example of ani-
mation can be found in the Additional file 1: Video S1.
Even though the articulatory parameters driving the

avatar and the ones derived from the speaker have the
same topology (e.g., jaw1 controlled in both cases the
jaw opening/closing), it may happen that positive vari-
ation of jaw1 corresponded to jaw opening for the ava-
tar’s model and jaw closing for the speaker’s model. The
sign attribution was determined manually.

Conclusions & perspectives
A method to transform an avatar with generic tongue
model and animation by key frames into a talking head
that displays naturalistic tongue, jaw and lip motions
was described. First, a multimodal speech database con-
sisting of the recording of face and tongue movements
during the production of a large number of sentences by
an Australian speaker was created. This database was
processed to create a dictionary of synchronous multi-
modal diphones. An articulatory model of the ECA was
then created by transforming selected key frames into
articulatory parameters for the jaw, lips and tongue. Real
articulatory data together with the acoustic signal were
used to steer the talking head using the MaryTTS

Fig. 8 Schematic representation of the visual synthesis system. Given a series of diphones (e.g., “Welcome”), the system searches in the diphone
dictionary the candidates and creates a trellis of diphones (i.e., a list of diphone candidates). The best series of diphones is selected using a
concatenation cost, i.e., the aim is to minimize the RMS distance between values of the articulatory parameters of the last frame of the previous
diphone and the first frame of the current one. The selected diphones are linked by a blue line in this example. If consecutive diphones come
from the same sentence, there is no gap at the concatenation borders (e.g., this is the case for the diphones El, lk and k@ in this example). In
other cases, there is a gap (Δ) at the concatenation that must be minimized. A gapless processing step is applied to each articulatory parameter.
It consists of adding a small value (equal to Δ/T*frame_index, where Δ corresponds to the difference between the values of the articulatory
parameter of the last frame of the current diphone and the first frame of the following one, T corresponds to the total number of frames of the
current diphone and frame_index corresponds to the current frame number) at each time step to reduce the gap while keeping the temporal
nonlinear variation of the parameter values
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software (Schröder et al. 2011) to generate the synthetic
acoustic signal and the phoneme and prosodic informa-
tion. The original ECA with good non-verbal capabilities
(facial expressions, blinks, gestures, pupil dilation/con-
striction (Gibert and Stevens 2012), etc.) and poor
speech capabilities was transformed. The ECA kept its
nonverbal capabilities intact and significantly improved
its speech capabilities. Importantly, this method is a
bridge between the ECA and speech communities. More
methods should be established to take advantages of the
development of the two communities to create virtual
agents able to interact naturally with human partners.
Human communication is multimodal in essence: verbal,
coverbal and nonverbal channels of communication are
used during face-to-face communication. Each commu-
nity has developed specific models for verbal, coverbal
and nonverbal behaviors. Bridges such as the proposed
method are vitally important for virtual humans to effi-
ciently use all possible channels of communication.
The proposed method could be easily extended to

other realistic auditory-visual animation methods based
on concatenation (Musti et al. 2011) or Hidden Markov
Models (Bailly et al. 2009) using the same unique multi-
modal database. Electromagnetic articulography provides
only a spatially sparse representation of the tongue
movements. Co-registration methods of EMA and real-
time magnetic resonance imaging (rtMRI) data (Kim et
al. 2014) provides richer spatio-temporal data to animate
the tongue movements and create a better 3D tongue
model. The proposed method could be applied on the
USC-TIMIT (Narayanan et al. 2014) which is an exten-
sive database of multimodal (EMA, rtMRI, acoustics)
speech production. This work could be extended to
emotional speech production which generates different
articulation patterns for critical speech articulators com-
pared to neutral speech production (Kim et al. 2015). An
evaluation of the method will be performed in the future
to assess the gain in intelligibility; for instance, through
a speech in noise perception experiment (Gibert et al.
2013). Furthermore, the proposed method could be ap-
plied to modify existing avatars that are not able to pro-
duce correct speech movements. This would allow
hearing impaired people (Gibert et al. 2005) and second
language learners (Engwall 2008) to effectively utilize a
larger number of virtual agent applications.

Additional file

Additional file 1: Video S1. The video illustrates the articulatory
parameters (jaw1, jaw2, tongue1, tongue2, tongue 3, tongue 4, lips1, lips
2, lips3, eyebrows1) derived from the speech production database and
their effects on facial movements. Then, an example of data
reconstruction is shown, this processing step allows to recover missing
data. Finally, an example of ECA animation using real speech production
data is played. (MP4 14967 kb)
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